Measurement of the Top Quark Pair Production Cross Section in Lepton+Jets Final States at DØ using Lifetime b-Tagging

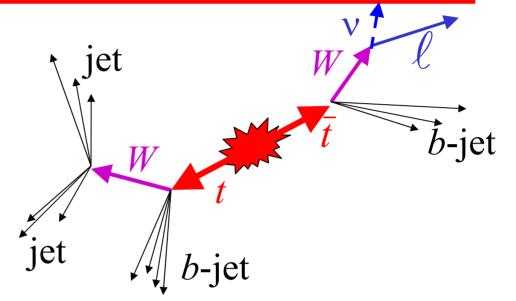
Flera Rizatdinova (KSU) for the DØ Collaboration

- Introduction
- Analysis overview
- b-tagging performance
- Background calculation
- Results
- Conclusions

Introduction

- > Study of the top quark provides an excellent probe of the electroweak symmetry breaking mechanism.
- New physics may be discovered in either its production or decays (like top decays to a charged Higgs boson and b quark).
- \triangleright Good test of perturbative QCD which predicts $t\bar{t}$ cross section.
- Tevatron is the only place to study top quark properties before LHC operation (where it will be a major background to many searches of new physics).
- Top quark studies are the primary goal of the Run II at the Tevatron.

Lepton+jets channel

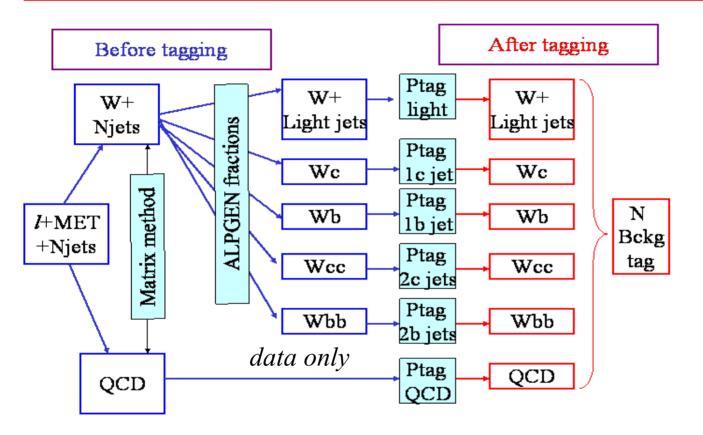


Golden mode:

- Large statistics (compared to dilepton channel);
- ➤ Clear signature (compared to all-jets channel);
- ➤ b-tagging effective tool to improve signal-to-background ratio

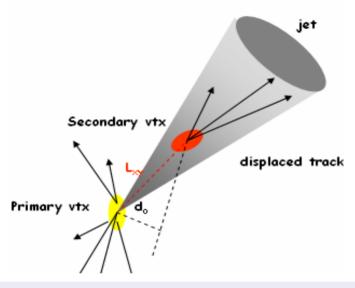
Event selection:

- Missing E_T (neutrino) (>20 GeV in e+jets and > 17 GeV in μ +jets channel);
- \triangleright One high-p_T isolated lepton (p_T>20 GeV);
- \triangleright Number of jets ≥ 3 (E_T>15 GeV)


Backgrounds:

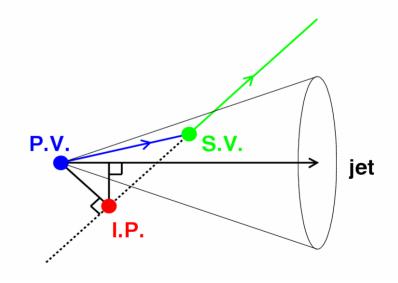
- ➤ W+jets production dominant;
- QCD multijet production;
- Single top, VV production, $Z \rightarrow \tau^+ \tau^-$
- > Z+jets production;

Lepton+jets with b-tagging: Method overview


Estimate tt production cross-section from the excess observed in the number of tagged events w.r.t. BG expectation in 3 and 4jet multiplicity bins.

Other small backgrounds are estimated using SM cross sections; will discuss in more details further

Two b-tagging methods

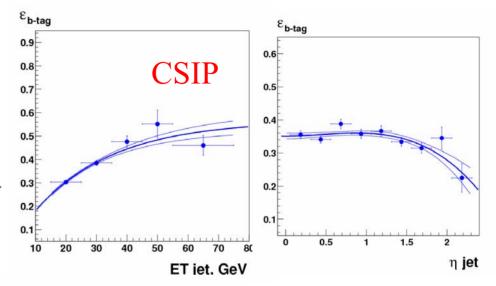


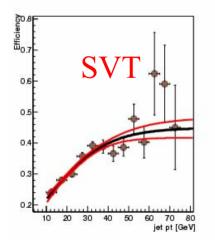
Secondary Vertex Tag (SVT)

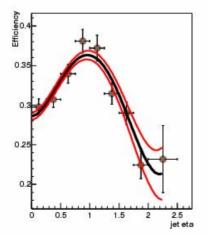
- \triangleright Look for displaced vertices (≥ 2 tracks),
- > jet is tagged as a b jet
 - If signed decay length significance >7

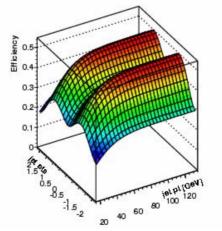
Counting Signed Impact Parameter tag (CSIP)

- $ightharpoonup S = IP/\sigma(IP)$
- > Jet is positively tagged if it has
 - at least two tracks with S>3 or
 - at least three tracks with S>2




b-tagging efficiency in data




b-tagging efficiency measured in data:

Used data set of jets that have a muon inside them – this data is enhanced with heavy flavor content

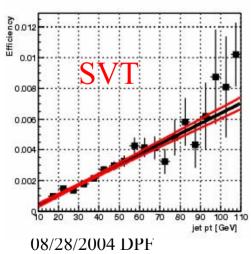
Probability to tag a tt event $P(n_{tag} \ge 1)$:

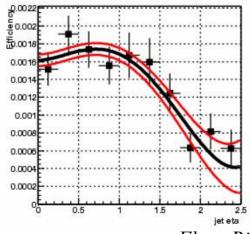
CSIP: ~61%

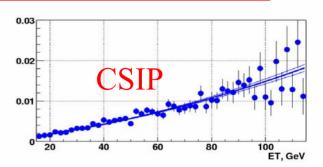
SVT: ~58%

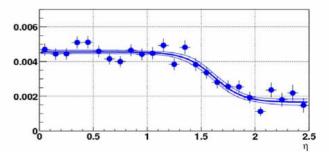
Flera Rizatdinova

Mistagging rate in data




Measured negative tagging rate ε^- (NTR) on data;

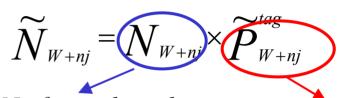

Need to correct NTR for presence of heavy flavor component and for absence of fragments from long-lived particles:


$$\varepsilon_{light}(p_T, \eta) = \varepsilon^-(p_T, \eta) \cdot SF_{hf} \cdot SF_{ll}$$

These coefficients were derived from Monte Carlo, their product is ~1

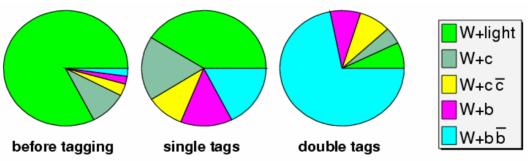
W+4 light jets events

$$P(n_{tag} \ge 1)$$
:



Background estimation: W+jets

- ➤ Use *W*+*jets* sample generated with ALPGEN interfaced to PYTHIA;
- > Rely on ratios of the cross sections;
- Apply matching procedure to eliminate double counting and reduce sensitivity to parton generation cuts.


Estimated N of W+jets events after tagging:

N of preselected W+nj events before tagging

Average event tagging probability

$$\widetilde{P}_{W+nj}^{tag} = \sum_{flavor} F_{flavor} P_{W+nj(flavor)}^{tag}$$

Background estimation: QCD background

e+*jets* ("ordinary" QCD)

- ➤ N_{QCD} in **preselected** sample is estimated from Matrix Method:
 - Different probabilities for lepton from QCD and W decays to pass certain criteria
- ightharpoonup Measure probability P_{QCD} to tag a QCD event on data;
- > Expected number of events after tagging:

$$N_{QCD}^{tag} = P_{QCD} \times N_{QCD}$$

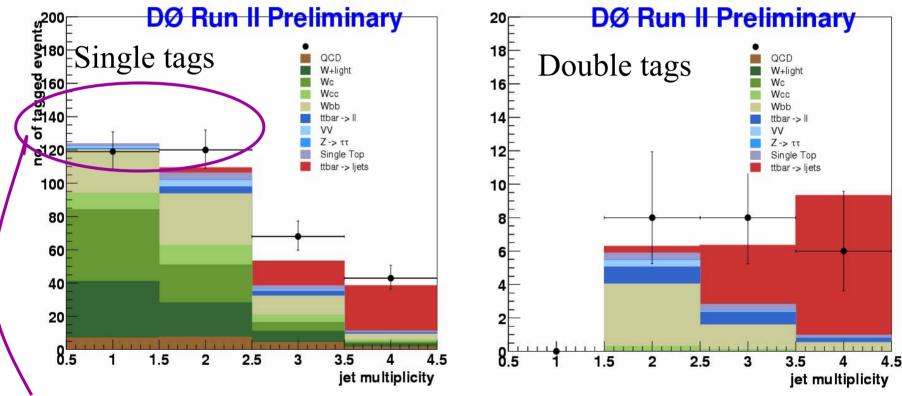
μ +jets (a lot of heavy flavor)

- ➤ Apply *b*-tagging to preselected sample;
- ➤ N_{QCD} in **tagged** sample is estimated from Matrix Method;
- ➤ Checked with *e*+*jets* data that both methods give the same results within errors

Caveat:

➤ Low statistics of tagged sample leads to relatively large statistical error on N_{OCD} events

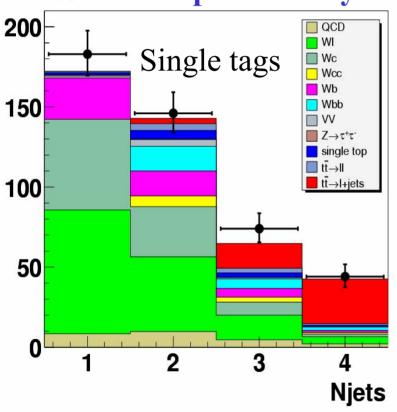
Background estimation: other small backgrounds


- \triangleright Single top, WW, WZ, ZZ production, Z $\rightarrow \tau^+\tau^-$;
 - Subtract using theoretical cross sections;
 - Theoretical uncertainties do not have big impact since the contribution from these processes is small;
- > Z+jets production;
 - Similar to W+jets (but much smaller), treat them together;
- $\succ tt \rightarrow dileptons$
 - Treat as a signal

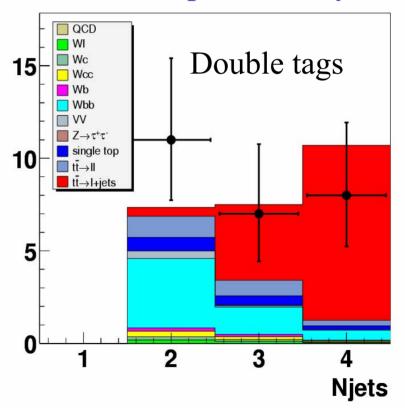
SVT results

Lepton+jets channel:(e+jets : L = 169 pb⁻¹ ; $\mu+jets$: L = 158 pb⁻¹); tt contribution is shown for σ_{tt} = 7 pb;

Control bins, provide control on background calculations



CSIP results



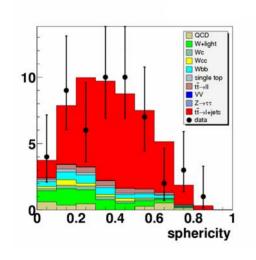
Lepton + jets channel: $t\bar{t}$ prediction is shown for $\sigma_{t\bar{t}} = 7$ pb;

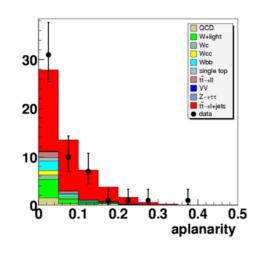
DØ Run II preliminary

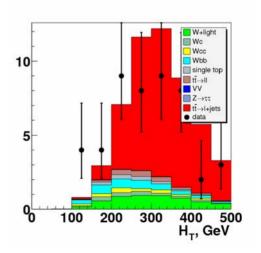
DØ Run II preliminary

Measured $t\bar{t}$ cross section

> SVT:

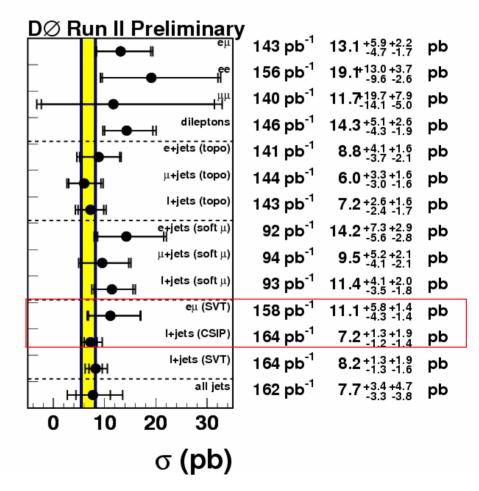

$$\sigma_{t\bar{t}} = 8.2^{+1.3}_{-1.3}(stat)^{+1.9}_{-1.6}(syst) \pm 0.5(lumi)pb;$$


> CSIP:


$$\sigma_{t\bar{t}} = 7.2^{+1.3}_{-1.2}(stat)^{+1.9}_{-1.4}(syst) \pm 0.5(lumi)pb;$$

Largest systematic uncertainties from jet energy scale and btagging efficiency measurement on data

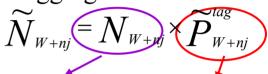
Topological characteristics of observed events:



Conclusions

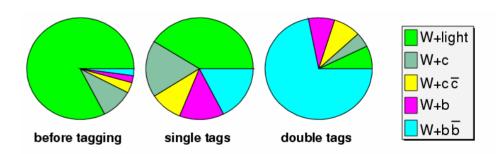
- ➤ DØ presented cross section measurement in lepton +jets channel performed with lifetime tagging;
- Two different methods are used to cross check results;
- This is the most precise measurement of top quark pair cross section in DØ;
- Obtained results are in a good agreement with the SM prediction

Backup slides


W+jets background estimation

process	σ (pb)	process	σ (pb)	process	σ (pb)	process	σ (pb)
Wj	424.90	Wjj	126.81	Wjjj	32.48	Wjjjj	8.89
Wc	16.01	Wcj	7.60	Wcjj	2.38	Wcjjj	0.64
		$Wb\bar{b}$	4.61	$Wb\bar{b}J$	2.00	$Wb\bar{b}Jj$	0.81
		Wcc	11.43	W ccJ	4.68	W cē J j	1.93

- ➤ Use *W*+*jets* sample generated with ALPGEN interfaced to PYTHIA;
- ➤ Do not use absolute values of crosssections; instead rely on their ratios;
- Apply matching procedure to eliminate double counting and reduce sensitivity to parton generation cuts.


Estimated N of W+jets events after tagging:

N of preselected W+nj events before tagging

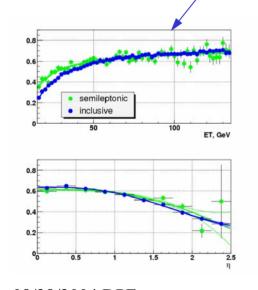
Average event tagging probability

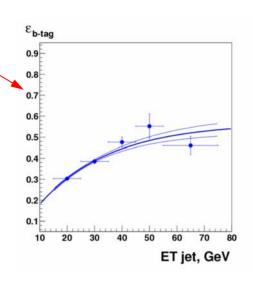
$$\widetilde{P}_{W+nj}^{tag} = \sum_{flavor} F_{flavor} P_{W+nj(flavor)}^{tag}$$

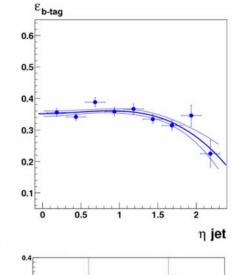
QCD background in ℓ +jets channel

- ➤ Electron+jets channel: fake electrons (jets) and fake Compton QCD;
- ➤ Muon+jets channel: *heavy flavor QCD production*;
- \triangleright N_{QCD} in the preselected sample is estimated by Matrix Method (MM):
- Measure probability P_{QCD} to tag a QCD event as a function of number of jets;
- > Number of QCD events in the tagged sample is:

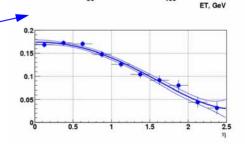
$$N_{\mathit{QCD}}^{\mathit{tag}} = P_{\mathit{QCD}} \times N_{\mathit{QCD}}$$

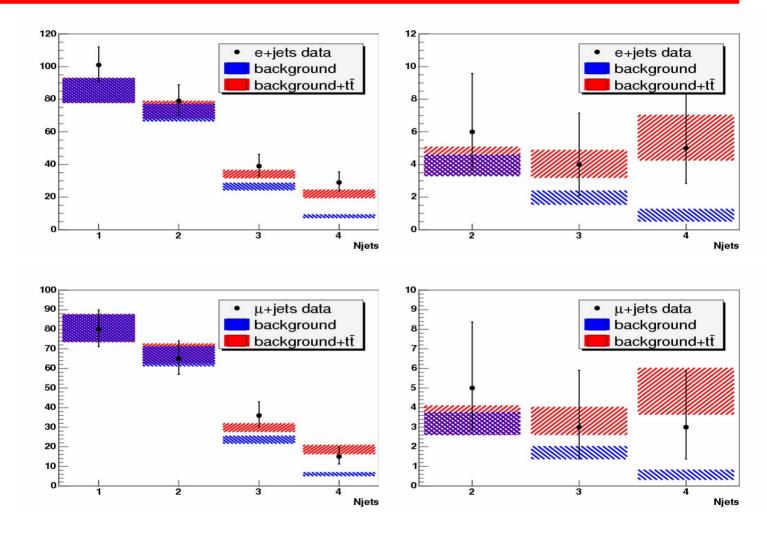

b,c-tagging efficiencies in data and MC




b-tagging efficiency in data

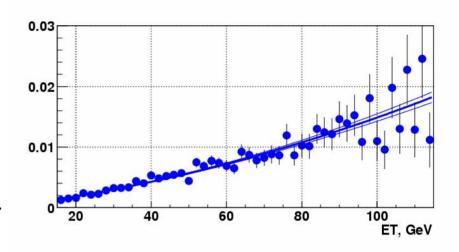
was measured by three different methods. Here the basic method is shown.

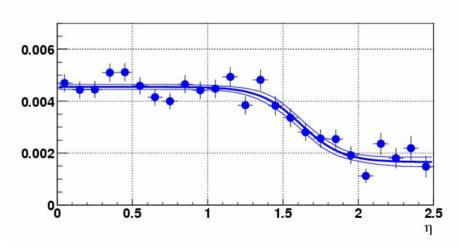



Cannot measure c-tagging efficiency on data – instead, use MC c-tagging efficiency corrected by ratio of b-tagging efficiencies in data to MC.

Uncertainty on predictions

Estimation of the mistagging rate


Measured negative tagging rate on data, but want to know the probability to tag a light jet (jet originated from *u,d,s* quarks).


Need to correct negative tagging rate:

- For the presence of heavy flavor in data in negative tags (correction factor SF_{hf});
- For the missing contribution from long-lived particles (correction factor SF_{II})

$$\mathcal{E}_{light} = \mathcal{E}_{data}^{negative}(E_T, \eta) SF_{hf} SF_{ll}$$

From MC studies, 0.96

Systematic uncertainties

- Took into account 26 different sources of systematic errors
- > Largest uncertainties:
 - jet energy scale;
 - b-tagging efficiency in data;
- Tagability in data;
- > Flavor dependence of tagability;
- Inclusive b-tagging efficiency in MC;
- Inclusive c-tagging efficiency in MC;
- Semileptonic b-tagging efficiency in MC;
- Semileptonic b-tagging efficiency in data;
- Negative tagging rate in data
- ➤ Light flavor SF in MC;
- Fragmentation model;
- \rightarrow Assumption $SF_c = SF_{b}$;
- ➤ W fractions from g splitting in HERWIG;
- ➤ W fractions from PDF

- Pre-selection efficiency;
- > Trigger efficiency;
- ➤ PV selection efficiency;
- \triangleright N_w and N_{OCD} in data;
- > Tagging probability;
- ➤ W fractions from ALPGEN;
- > Track matching with EM cluster;
- > Electron identification efficiency;

21

- ➤ Muon identification efficiency;
- > Jet identification efficiency;
- > Jet resolution;
- > Jet Energy Scale;